Диапазоны спектра электромагнитных волн

Диапазоны спектра электромагнитных волн

Спектр электромагнитных волн – это весь диапазон частот или длин вол электромагнитного поля, которое существует в природе. Этот спектр достаточно широк, поэтому его, для удобства классификации и работы с ним, разделяют на несколько диапазонов.

Все диапазоны электромагнитных вол по мере возрастания их частоты или длины волны располагают на так называемой «шкале электромагнитных волн». На этой шкале размещены (в порядке возрастания частоты) следующие диапазоны:

  1. Низкочастотные электромагнитные волны (от нескольких Гц до 100 кГц).
  2. Радиоволны (от 100 кГц до 300 ГГц).
  3. Инфракрасное излучение (от 300 ГГц до 400 тыс. ГГц).
  4. Видимый свет (от 400 до 800 тыс. ГГц).
  5. Ультрафиолетовое излучение (от 800 тыс. ГГц до 30 млн. ГГц).
  6. Рентгеновское излучение.
  7. Гамма излучение.

Рассмотрим более подробно каждый из этих диапазонов.

Низкочастотные электромагнитные волны – это самый низкий диапазон спектра. Именно в этом диапазоне работает большинство электронных приборов. Дело в том, что с низкочастотным диапазоном легче всего работать и им легче всего управлять.

Радиоволны идут следующим диапазоном в спектре. Как мы знаем, с помощью радиоволн работают практически все беспроводные системы и устройства для передачи информации. В свою очередь радиоволны разделяются на несколько поддиапазонов: длинные, средние, короткие, ультракороткие и сверхвысокочастотные (СВЧ).

Инфракрасное излучение, видимый свет и ультрафиолетовое излучение входят в так называемый «оптический диапазон» или оптический спектр. Этот диапазон находится в промежутке частот между 3·10 11 до 3·10 16 Гц. Оптический спектр также широко используется в системах передачи информации, но кроме этого еще и в системах отображения визуальной информации: дисплеях, мониторах, информационных табло и т.д.

Рентгеновское излучение возникает в результате различных процессов, возникающих в электронной оболочке атомов различных веществ. Например, при резком торможении быстрых заряженных частиц: электронов, протонов и других. Используется в основном в медицине.

Гамма излучение, также как и рентгеновское генерируется внутри ядер, правда не в результате торможения частиц, а в процессе реакции их деления. Используется, а точнее является следствием использования радиоактивных материалов в энергетике.

Электромагнитный спектр условно делится на диапазоны. В результате их рассмотрения необходимо знать следующее.

  • Название диапазонов электромагнитных волн.
  • Порядок их следования.
  • Границы диапазонов в длинах волн или частотах.
  • Чем обусловлено поглощение или излучение волн того или иного диапазона.
  • Использование каждого типа электромагнитных волн.
  • Источники излучения различных электромагнитных волн (естественные и искусственные).
  • Опасность каждого вида волн.
  • Примеры объектов, имеющих размеры, сравнимые с длиной волны соответствующего диапазона.
  • Понятие об излучении абсолютно черного тела.
  • Солнечное излучение и окна прозрачности атмосферы.

Диапазоны электромагнитных волн

Диапазон Дополнительное деление Длины волн Иное
Микроволновый 1 мм — 30 см
Инфракрасный (ИК) дальний (субмиллиметровый) 10 – 1000 мкм 50 – 2000 мкм
средний 1 – 10 мкм 5 – 30 мкм
2,5 – 50 мкм
ближний 0,73 – 1 мкм 0,73 – 5 мкм
0,74 – 2,5 мкм
Видимый 0,38 – 0,73 мкм
Ультрафиолетовый (УФ) ближний 200 – 380 нм
вакуумный 100 – 200 нм
жесткий 10 – 100 нм
Рентгеновский мягкий 0,1 – 20 нм
жесткий 0,01 – 0,1 нм
Гамма 2 . При этом 527 Вт приходится на ИК излучение, 445 Вт на видимый диапазон и 32 Вт есть УФ излучение. Баланс между поглощенной и излученной электромагнитной энергией имеет критическое значение для климата Земли.

На рисунке – солнечное излучение при входе в атмосферу (желтый цвет) и на поверхности Земли (красный цвет). Для сравнения приведена кривая излучения абсолютно черного тела с температурой, которая максимально приближает кривую к спектру излучения солнца. Видно, что на некоторых длинах волн излучение не дотигает поверхности Земли, а поглощается атмосферными молекулярными газами.

Большинство лазеров, к примеру, ND:YAG, многие волоконные и большинство мощных диодных лазеров, излучают в ближнем ИК диапазоне. Относительно небольшое число лазеров излучает в средней и длинноволновой части ИК диапазона. Например, CO2 лазер излучает в районе 10,6 мкм и 9,6 мкм и на некоторых других длинах волн в этой области. Лазеры на свободных электронах позволяют получить очень мощное, перестраиваемое в широких пределах, инфракрасное излучение. ИК излучение может быть также получено за счет преобразования частоты в нелинейных кристаллах.

Инфракрасные волны используются в телекоммуникациях (0,75 – 1,8 мкм), для обработки материалов (резка, “сверление” и т.д.) (1 – 10 мкм), термографии (0,9 – 14 мкм), для дистанционного управления бытовой техникой (телевизоры, видео магнитофоны), в физиотерапии для прогрева травмированных участков тела, для связи на коротких дистанциях, в приборах ночного видения, в чувствительных к теплу детекторах боеголовок снарядов и ракет (3 – 5 мкм), в охранных системах домов, устройствах ночного видения, спектроскопии.

Читайте также:  Почему руки желтого цвета

Видимый диапазон

Один из наиболее важных для человека диапазонов, связанных с возможностью видеть окружающий мир. Он занимает сравнительно небольшой участок электромагнитного спектра 380 – 730 нм.

Они

  • Легко проходят атмосферу.
  • Единственные эдектромагнитные волны, которые могут быть обнаружены человеческим глазом.
  • Поглощаются за счет возбуждения электронов в молекулах и атомах, межзонных переходов в полупроводниках.
  • Естественные источники: солнце, молнии. Искусственные: лампы накаливания, газоразрядные лампы, светодиоды, лазеры на красителях, газовые ионные, твердотельные и полупроводниковые лазеры.
  • Имеют неизмеримое количество приложений.

Волны с разной длиной имеют свой цвет. Цветовая гамма состоит из бесконечного количества цветовых оттенков, но принято именовать 7 основных цветов. Красный (625—740), оранжевый (590—625), желтый (565—590), зеленый (500—565), голубой (485—500), синий (440—485), фиолетовый (380—440).

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 680—790 2,82—3,26
Синий 440—485 620—680 2,56—2,82
Голубой 485—500 600—620 2,48—2,56
Зелёный 500—565 530—600 2,19—2,48
Жёлтый 565—590 510—530 2,10—2,19
Оранжевый 590—625 480—510 1,98—2,10
Красный 625—740 400—480 1,68—1,98

Среди лазеров и источников с их применением, излучающих в видимом диапазоне, можно назвать следующие: первый запущенный лазер, — рубиновый, с длиной волны 694,3 нм, диодные лазеры, к примеру на основе GaInP и AlGaInP для красного диапазона, и на основе GaN для синего диапазона, титан-сапфировый лазер, He-Ne лазер, лазеры на ионах аргона и криптона, лазер на парах меди, лазеры на красителях, лазеры с удвоением или суммированием частоты в нелинейных средах, рамановские лаэеры. (https://www.rp-photonics.com/visible_lasers.html?s=ak).

Долгое время существовала проблема в создании компактных лазеров в сине-зеленой части спектра. Имелись газовые лазеры, такие как аргоновый ионный лазер (с 1964 года), у которого две основные линии генерации лежат в синей и зеленой части спектра (488 и 514 нм) или гелий кадмиевый лазер. Однако для многих приложений они не годились из-за своей громоздкости и ограниченного количества линий генерации. Создать полупроводниковые лазеры с широкой запрещенной зоной не удавалось из-за огромных технологических трудностей. Однако в конечном итоге были разработаны эффективные методы удвоения и утроения частоты твердотельных лазеров ИК и оптического диапазона в нелинейных кристаллах, полупроводниковые лазеры на основе двойных соединений GaN и лазеров с повышением частоты накачки (upconversion lasers).

Источники света в сине зеленой области позволяют увеличить плотность записи на CD-ROM, качество репрографии, необходимы для создания полноцветных проекторов, для осуществления связи с подводными лодками, для снятия рельефа морского дна, для лазерного охлаждения отдельных атомов и ионов, для контроля за осаждением из газа (vapor deposition), в проточной цитометрии. (взято из “Compact blue-green lasers” by W. P. Risk et al).

Ультрафиолетовый диапазон

Считается, что ультрафиолетовый диапазон занимает область от 10 до 380 нм. Хотя границы его четко не определены, особенно в коротковолновой области. Он делится на поддиапазоны и это деление также не является однозначным, так как в разных источниках привязано к различным физическим и биологическим процессам.

Так на сайте "Health Physics Society" ультрафиолетовый диапазон определен в границах 40 — 400 нм и делится на пять поддиапазонов: вакуумный УФ (40-190 нм), дальний УФ (190-220 нм), UVC (220-290 нм), UVB (290-320 нм), и UVA (320-400 нм) (черный свет). В англоязычной версии статьи об ультрафиолете в Википедии "Ultraviolet" под ультрафиолетовое излучение выделяется диапазон 40 — 400 нм, однако в таблице в тексте представляется его деление на кучу перекрывающихся поддиапазонов, начиная с 10 нм. В русскоязычной версии Википедии "Ультрафиолетовое излучение" с самого начала границы УФ диапазона устанавливаются в пределах 10 — 400нм. Кроме того в Википедии для диапазонов UVC, UVB и UVA указаны области 100 – 280, 280 – 315, 315 – 400 нм.

Ультрафиолетовое излучение несмотря на свое благотворное влияние в небольших количествах на биологические объекты является одновременно самым опасным из всех других естественных широкораспространенных излучений других диапазонов.

Основным естественным источником УФ излучения является Солнце. Однако не все излучение достигает Земли, так как поглощается озоновым слоем стратосферы и в области короче 200 нм очень сильно атмосферным кислородом.

UVC практически полностью поглощается атмосферой и не достигает земной поверхности. Этот диапазон используется бактерицидными лампами. Чрезмерная экспозиция приводит к повреждению роговицы и снежной слепоте, а также к тяжелым ожогам лица.

Читайте также:  Препарат хайрабезол инструкция по применению

UVB наиболее разрушительная часть УФ излучения, так как она имеет достаточно энергии для повреждения ДНК. Она не полностью поглощается атмосферой (проходит около 2%). Это излучение необходимо для выработки (синтеза) витамина D, однако вредное влияние могут повлечь ожоги, катаракту и рак кожи. Эта часть излучения поглощается озоном атмосферы, снижение концентрации которого вызывает беспокойство.

UVA практически полностью достигает Земли (99%). Оно ответственно за загар, но чрезмерность приводит к ожогам. Как и UVB оно необходимо для синтеза витамина D. Облучение сверх меры приводит к подавлению иммунной системы, жесткости кожи и образованию катаракты. Излучение в этом диапазоне называют еще черным светом. Насекомые и птицы способны видеть этот свет.

На рисунке ниже для примера показана зависимость концентрации озона по высоте на северных широтах (желтая кривая) и уровень блокирования озоном солнечного ультрафиолета. UVC полностью поглощается до высот в 35 км. В то же время UVA почти полностью достигает поверхности Земли, однако это излучение практически не представляет какой-либо опасности. Озон задерживает большую часть UVB, однако некоторая его часть достигает Земли. В случае истощения озонового слоя большая часть будет облучать поверхность и приводить к генетическому повреждению живых существ.

Краткий список использования электромагнитных волн УФ диапазона.

  • Фотолитография высокого качеста для изготовления электронных устройств таких, как микропроцессоры и микросхем памяти.
  • При изготовлении оптоволоконных элементов, в частности брэгговских решеток.
  • Обеззараживание от микробов продуктов, воды, воздуха, предметов (UVC).
  • Черный свет (UVA) в криминалистике, в экспертизе произведений искусства, в установлении подлинности банкнот (явление флуоресценции).
  • Искусственный загар.
  • Лазерная гравировка.
  • Дерматология.
  • Стоматология (фотополимеризация пломб).

Рукотворными источниками ультрафиолетового излучения являются:

Немонохроматические: Ртутные газоразрядные лампы различных давлений и конструкций.

Монохроматические:

  1. Лазерные диоды, в основном на базе GaN, (небольшой мощности), генерирующие в ближнем ультрафиолетовом диапазоне;
  2. Эксимерные лазеры являются очень мощными источниками ультрафиолетового излучения. Они излучают наносекундные (пикосекундные и микросекундные) импульсы со средней мощностью от нескольких ватт до сотен ватт. Типичные длины волн лежат между 157 нм (F2) до 351 нм (XeF);
  3. Некоторые твердотельные лазеры, легированные церием, такие как Ce3+:LiCAF или Ce3+:LiLuF4, которые работают в импульсном режиме с наносекундными импульсами;
  4. Некоторые оптоволоконные лазеры, к примеру, легированные неодимом;
  5. Некоторые лазеры на красителях способны излучать ультрафиолет;
  6. Ионный аргоновый лазер, который, несмотря на то, что основные линии лежат в оптическом диапазоне, может генерировать непрерывное излучение с длинами волн 334 и 351 нм, но с меньшей мощностью;
  7. Азотный лазер, излучающий на длине волны 337 нм. Очень простой и дешевый лазер, работает в импульсном режиме с наносекундной длительностью импульсов и с пиковой мощностью несколько мегаватт;
  8. Утроенние частоты Nd:YAG лазера в нелинейных кристаллах;

Содержание

Длина волны — частота — энергия фотона [ править | править код ]

В качестве спектральной характеристики электромагнитного излучения используют следующие величины:

Энергия фотона, согласно квантовой механике, пропорциональна частоте: E = h ν <displaystyle E=h
u > , где h — постоянная Планка, Е — энергия, ν <displaystyle
u > — частота. Длина электромагнитной волны в вакууме обратно пропорциональна частоте и выражается через скорость света: ν λ = c <displaystyle
u ,lambda ,=,c> . Говоря о длине электромагнитных волн в среде, обычно подразумевают эквивалентную величину длины волны в вакууме, которая отличается на коэффициент преломления, поскольку частота волны при переходе из одной среды в другую сохраняется, а длина волны — изменяется.

В верхней части шкалы приводятся значения энергии (в электронвольтах). Частоты, указанные в нижней части шкалы, выражены в герцах, а также в кратных единицах: кГц = 1000 Гц, МГц = 1000 кГц = 1000000 Гц, ГГц = 1000 МГц = 10 9 Гц, ТГц = 1000 ГГц = 10 12 Гц.

Шкала частот (длин волн, энергий) является непрерывной, но традиционно разбита на ряд диапазонов. Соседние диапазоны могут немного перекрываться.

Основные электромагнитные диапазоны [ править | править код ]

γ-излучение [ править | править код ]

Гамма-лучи имеют энергию выше 124 000 эВ и длину волны меньше 0,01 нм = 0,1 Å.

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики — γ-оптики [1] [2] [3] [4] .

Читайте также:  Ожоги серной кислотой фото

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты — электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение [ править | править код ]

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) — жёсткое рентгеновское излучение. Источники: некоторые ядерные реакции, электронно-лучевые трубки.
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) — мягкое рентгеновское излучение. Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое, тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

Ультрафиолетовое излучение [ править | править код ]

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 — 300 3,10 — 4,13 эВ
Средний MUV 300 — 200 4,13 — 6,20 эВ
Дальний FUV 200 — 122 6,20 — 10,2 эВ
Экстремальный EUV, XUV 121 — 10 10,2 — 124 эВ
Вакуумный VUV 200 — 10 6,20 — 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 — 315 3,10 — 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 — 280 3,94 — 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 — 100 4,43 — 12,4 эВ

Оптическое излучение [ править | править код ]

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ источник не указан 1204 дня ] ) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

Цвета видимого излучения, соответствующие монохроматическому излучению, называются спектральными. Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 790—680 2,82—3,26
Синий 440—485 680—620 2,56—2,82
Голубой 485—500 620—600 2,48—2,56
Зелёный 500—565 600—530 2,19—2,48
Жёлтый 565—590 530—510 2,10—2,19
Оранжевый 590—625 510—480 1,98—2,10
Красный 625—740 480—405 1,68—1,98

Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного цвета, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.

Инфракрасное излучение [ править | править код ]

Инфракрасное излучение расположено между видимым светом и терагерцовым излучением. Диапазон: от 2000 мкм (150 ГГц) до 740 нм (405 ТГц).

Электромагнитное терагерцовое излучение [ править | править код ]

Терагерцовое излучение Терагерцовое (субмиллиметровое) излучение расположено между инфракрасным излучением и микроволнами, в диапазоне от 1 мм (300 ГГц) до 0,1 мм (3 ТГц).

Электромагнитные микро- и радиоволны [ править | править код ]

Для электромагнитных волн с частотой ниже 300 ГГц существуют достаточно монохроматичные источники, излучение которых пригодно для амплитудной и частотной модуляции. Поэтому распределение частот в этой области всегда имеет в виду задачи передачи сигналов.

  • от 30 ГГц до 300 ГГц — микроволны.
  • от 3 ГГц до 30 ГГц — сантиметровые волны (СВЧ).
  • от 300 МГц до 3 ГГц — дециметровые волны.
  • от 30 МГц до 300 МГц — метровые волны.
  • от 3 МГц до 30 МГц — короткие волны.
  • от 300 кГц до 3 МГц — средние волны.
  • от 30 кГц до 300 кГц — длинные волны.
  • от 3 кГц до 30 кГц — сверхдлинные (мириаметровые) волны.

В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не физическим разделением волн, а методами обработки сигналов. [ источник не указан 3078 дней ]

Ссылка на основную публикацию
Adblock detector